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1 Introduction

The goal of this lecture is to explain the mechanisms of relaxation caused by the thermal motion of
molecules. The text consists of two main parts. The physics of relaxation is discussed in a simple
way in section 2. This yields a qualitative understanding of experimental facts. The necessary results
from quantum mechanics are to be believed, as they are used without a proof. This is thought for the
reader who does not need a guided tour in the laboratory of quantum mechanics. The prerequisites for
the understanding of this part are the very basic notions of quantum mechanics, statistical physics and
Fourier transformation. In the rest of the text, section 3, a more involved analysis is presented that
verifies the assumption made and introduces a method that enables a quantitative analysis of relaxation.
The reader is expected to possess basic knowledge in linear algebra, differentiation and integration and
be acquainted with the notion of correlation functions. The described way of presentation is in line with
that by Goldman [1, chapter 9] the book by whom is the main reference in this lecture.

2 Qualitative Description of Relaxation

2.1 Description of Spin 1/2

In this lecture, we focus on spins of atomic nuclei of molecules in the liquid state. The spin of such
particles can be manipulated by applying magnetic fields. We consider only particles with the spin
s = 1/2 such as protons in molecules of water and other substances.

A spin can be thought of as the angular momentum of a rotating elementary particle treated as a
massive body. The angular momentum is an arbitrary vector in classical physics. In quantum mechanics
its length is quantized, that is it can takes only discrete values. The direction of such a vector is arbitrary
being described by two angles as illustrated in Fig. 1. The presense of unexplained restriction reflects the
inconsistency of the classical interpretation of spin.

A consistent description of individual spins can be achieved only in terms of quantum mechanics.
A spin is described by a wave function which takes the form of a spinor with only two independent
parameters:

ψ =

(

u
v

)

=

(

cos θ
sin θ eiϕ

)

Fig. 1

(1)

Here the first form of ψ represents a generic spinor with two complex-valued components. The compo-
nents, u and v, are the probability amplitudes of finding the particle in the states with the spin projection
on the z-axis +~/2 and −~/2 respectively.
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The z-axis is conventionally selected to be parallel to the external magnetic field. In such a field there
are two states with definite energy that are described by the spinors

ψ+ =

(

1
0

)

and ψ− =

(

0
1

)

. (2)

These states are commonly referred to as ”spin up” and ”spin down”. An arbitrary spin in Eq. (1) is a
quantum superposition of these basis states with the coefficients u and v. The energy of these states is
E± = ∓~ω0/2, where ω0 = γB0 is the Larmor frequency and γ = 2.67522× 108 s−1T−1 [2]. Note that
the subscript ”±” refers to the orientation of spin. The energy of spin in the state ψ− is higher than in
the state ψ+.

According to this meaning, the common phase of the spinor is irrelevant, and the probability of any
measurement result, which is |u|2 + |v|2, must equal unity. The four real parameters of the two complex
numbers are thus reduced to two. The meaning of those is illustrated in the second form in Eq. (1). The
spinor is parametrised with two angles, θ and ϕ that define the orientation of the expectation value of the
spin. This expectation value is a vector of fixed length [s(s+1)~2]1/2 = 31/2~/2. It is the classical angular
momentum mentioned above. This vector is obtainable in a large number of measurements with particles
prepared in the state described by the spinor in Eq. (1). This can be fulfilled in a single measurement of
a large number of spins in the same state, an experiment similar to the signal acquisition in NMR.

2.2 Two Kinds of Relaxation

An isolated spin is an extremely simple system. In real samples, the nuclear spins are never isolated
being subjected to interactions with each other and the surrounding medium. The latter is typically in
thermal equilibrium with a definite temperature T . As a part of the large system the nuclear spins have
the same equilibrium temperature which implies a definite ratio between the probabilities of finding a
spin in one of the two quantum levels: |u|2/|v|2 = e−

�
ω/kT , where k = 1.380658× 10−23 JK−1 is the

Boltzmann constant.

Our first question is how fast this equilibrium is reached after being disturbed, for example, by a
radio frequency pulse. The proccess of changing the populations of the two energy levels toward the
equilibrium is called the longitudinal relaxation. The standard notation for its time constant is T1.

Another kind of relaxation takes place if the spins acquire a magnetization in a direction transverse
to the main magnetic field, that is when θ 6= 0, π in Eq. (1). Such a magnetization can be created with a
radio frequency pulse. Its component, which is transverse to the main field, precesses with the Larmor
frequency. Right after the excitation, all spins have the same precession phase, which is the angle ϕ in
Eq. (1). This phase coherence degrades with time resulting in a decrease in the measured signal which is
proportional to the vector sum of contributions of individual spins. This process of signal attenuation is
called the transverse relaxation. The standard notation for its time constant is T2. Our second question is
how fast the transverse magnetization decays. We focus here on the microscopic mechanisms of transverse
relaxation that are effective on the molecular scale assuming a perfectly homogeneous main magnetic field.
The effect of local heterogeneity of this field, which is an issue in living tissue, is considered in the next
lecture [3].

2.3 Qualitative Analysis of Relaxation

We proceed now with a qualitative application-oriented analysis of the relaxation. It is based on the
resonance character of transitions in quantum mechanical systems as presented in the next paragraph.
Basis experimental facts are discussed in the next sections.
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The interaction between a spin and the environment is mediated by random magnetic fields arising
due to the thermal motion of molecules. There are three main processes contributing in such fields. The
first is the thermal motion of electric charges formed by different charge densities of electrons and nuclei
in molecules. The second is the effect of nuclear magnetic moments and the third is the effect of electron
magnetic moments. The first effect is weaker than the second. The magnetic dipole-dipole interaction is
the main source of the relaxation in diamagnetic substances.

The electron magnetic moment is three orders in magnitude larger than that of nuclear spins, but
its effect is compensated by the opposite orientation of electron spins in the pairs of coupled electrons.
Uncoupled electrons when present have a strong effect on the relaxation of nuclear spins. Such electrons
are present in free radicals and on inner electron shells in some heavy elements such as gadolinium. A
medium with uncoupled electrons is paramagnetic.

We will characterize the very complex random field with only two parameters: the averaged strength
of the field at the position of a spin and the characteristic time constant of variations of this field. The
field strength is characterized by the shift in the larmor frequency of the proton, Ω. The time constant
is called the correlation time, τ . The aim of this section is to estimate the dependence of the relaxation
rates on these parameters.

The random magnetic fields cause transitions between the two basic states of a given spin which is
the mechanism of relaxation. According to quantum mechanics, the transition between different states is
a resonance process. Its rate is proportional to the spectral density of the random field at the frequency,
ω, that corresponds to the energy difference, ∆E, between the initial and final states, ω = ∆E/~.

For the longitudinal relaxation, these states are ψ± as defined in Eq. (2). The transition between them
can be thought of as a change of angle θ in Eq. (1). A more accurate description is given below in section
3. The energy difference between these basis states is ∆E = ~ω0 and the corresponding frequency is the
Larmor frequency ∆E/~ = ω0.

For the transverse relaxation, the transitions take place between the states that have different ϕ in
Eq. (1) and the same θ. These states are quantum superpositions of the basis states in Eq. (2). For
example, the state with the polarization along the x-axis is described by Eq. (1) with θ = π/2 and ϕ = 0
and the state with the polarization along the y-direction has θ = π/2 and ϕ = π/2. The energy difference
between them is zero.

Consider now the spectral density of the perturbation. It is typically a decreasing function of frequency
as illustrated in Fig. 2. The width of the peak is given by the inverse correlation time. The integral of
the spectral density over all frequencies is the standard deviation of the instant field. As such, it is
independent on the correlation time. That is why the magnitude of the peak at ω = 0 is proportional to
τ (Fig. 2).

We thus conclude that the transverse relaxation rate, R2 = 1/T2, which is defined by the spectral den-
sity at ω = 0, should be proportional to the correlation time as illustrated with the blue line in Fig. 3. The
longitudinal relaxation shows a more complex behavior. The spectral density at the Larmor frequency
is small for small and large τ (Fig. 2). It has a maximum at ω0τ ∼ 1. The longitudinal relaxation is
proportional to this spectral density as illustrated in Fig. 3. The longitudinal relaxation rate, R1 = 1/T1,
reaches a maximum for an intermediate correlation time such that ω0τ ∼ 1. Taking the inverse of the
relaxation rates, we come to Fig. 4 which illustrates schematically the correlation time dependence of T1

and T2.
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Let discuss the dependence of the relaxation on the strength of the dipole-dipole interaction, Ω. This
value is typically much smaller than the Larmor frequency. Its effect is just a power series in Ω with only
low order terms relevant. The term proportional to Ω turns to zero being proportional to the averaged
first power of the random magnetic field. The relaxation effect comes from the second-order term which
has a nonzero mean during the correlation time. Consequently, the relaxation rate should be proportional
to Ω2.

2.4 A Brief Discussion of Experimental Facts

The dependences represented in the above figures form a basis for analysing the relaxation proccess in
liquids. Consider first pure water. The correlation time τ is defined by the molecular motion. The
rate of molecular tumbling can be estimated by equating the kinetic energy of protons, mpv

2/2 to the
thermal energy kT/2. Using the constants mp = 1.7 × 10−27 kg and k = 1.4 × 10−23 J/K, we obtain
v = 4× 10−2 m/s. A particle with such a velocity traverses the characteristic atomic size about 10−10 m
in τ = 3× 10−13 s, which is our estimate for the correlation time. A similar estimate for the translation
motion gives a few times longer time, since τ is proportional to the square root of m, which should be
replaced with the mass of the whole molecule. The cyclic Larmor frequency at 1.5 T is ω0 = 4× 108 s−1.
Thus, the relaxation in water occurs deeply in the regime of short correlation times, ω0τ = 10−4 � 1.
Accordingly, T1 ≈ T2 and both relaxation times are very long (longer than one second). Note that T2 in
tissue is shortened significantly by microscopic heterogeneity of the magnetic field and other effects [3].

Large molecules move slowly. That is why protons of lipids experience random magnetic fields with
a longer correlation time. This explains a shorter T1 in fat tissue, the fact commonly used for the fat
suppression with the inversion recovery.

Some large molecules can bind water molecules for a time that is much longer than their native
correlation time. This occurs at chemically conditioned sites in the inner coordination shell of such
molecules in the presence of exchange with bulk water. These sites are termed the inner sphere. The
increase in the correlation time results in an enhanced relaxation. Concider for example gadolinium
chelates [4] which are currently the main type of contrast agent used in the clinical routine. The binding
of water molecules contributes about the half of the relaxation effect in the case of of Gd-ECF agent [5].
The other half is due to diffusion of water molecules in the magnetic field created by the paramagnetic
Gd-ion. This mechanism is termed as taking place in the outer sphere. This is the only mechanism of
relaxation enhancement by superparamagnetic particles of iron oxide [6, 7, 8], since the current coating
of these particles does not have any coordination sites for water.

Doping water with paramagnetic particles increases the magnitude of random magnetic field experi-
enced by nuclear spins in proportion to Ω2 which causes the effect on relaxation to be significant for even
low concentrations of such agents. The value Ω2 is in turn proportional to the squared magnetic moment
of molecules thus determining the same dependence of the outer-sphere relaxation rate [4].
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2.5 Conclusion

The above discussion concerns the basic qualitative features of the longitudinal and transverse relaxation.
We have used the semiclassical approach describing the spins in terms of quantum mechanics and the
environment as the source of a classical random magnetic field. A more detailed quantum description
engages quantum mechanics for both the spins and the environment. This leads to the same results for
the relaxation rates as in the semiclassical approach. The actual outcome of the quantum description
is the correct prediction of the equilibrium magnetization of nuclear spins. In the rest of this note, we
sketch a way for quantitative analysis of relaxation using the semiclassical description.

3 Quantitative Description of Relaxation

3.1 Semi-Classical Description of Relaxation

Consider an individual spin interacting with its environment as with a thermal bath. This environment is
conventionally called the lattice in the spirit of NMR in solids, even when one considers NMR in liquids.
The presence of a large number of degrees of freedom in the lattice suggests that its behaviour can be
described with a significant degree of averaging of all quantities to their classical values. We treat each
spin individually as a quantum system subjected to a classical ”force” which results from averaging of
the degrees of freedom in the lattice.

The evolution of a spin is described by the Schrödinger equation

i~
d

dt
ψ = Hψ , (3)

where ψ is described by the spinor given in the first equality in Eq. (1) and H is the Hamiltonian. It
consists of two terms, H = H0 + V , that describe the free spin precession and the action of the lattice
respectively.

The term H0 is defined by the interaction of the main magnetic field, ~B0, with the magnetic moment,
~µ, associated with the spin: H0 = −~µ ~B0 = −γ~S ~B0 = −~ω0σz/2. We use here the convention that the

third axis is selected parallel to the main field. ~S is the operator of spin consisting of components Sa,
a = x, y, z and σz is the third of the Pauli matrices selected here in the following form:

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

. (4)

The perturbation term is a 2× 2 matrix with the time-dependent components:

V =

(

V11(t) V12(t)
V21(t) V12(t)

)

. (5)

As any physical quantity, this matrix must be Hermitian, V = V †. The time dependence of the coefficient
is random. It is convenient to rewrite the equation in the form V = ~Ω, where Ω has the dimension of
frequency rather than energy. Explicitly,

V = ~

(

Ω11(t) Ω12(t)
Ω21(t) Ω12(t)

)

. (6)

The Schrödinger equation takes now the form

i
d

dt

(

u
v

)

=

[(

ω0/2 0
0 −ω0/2

)

+

(

V11(t) V12(t)
V21(t) V12(t)

)](

u
v

)

, (7)
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This explicit form will be used in what follows along with the abbreviated notations introduced above.

Solving Eq. (7) simplifies substantially if we take into account a significant difference in the magnitudes
of the two terms of the Hamiltonian. The magnitude of the Larmor frequency, ω0 is typically of the
order of 108 s−1. The relaxation times are known to be of the order of 0.1 – 1 seconds in water which
corresponds to the characteristic frequency of 1–10 Hz. This value is at least 107 times smaller than the
Larmor frequency. We use this fact in order to find an approximate solution to Eq. (7) accounting only
for the first nonvanishing correction in Ω/ω0. This approach termed perturbation theory belongs to the
main methods of quantum mechanics. It is described below for the sake of completeness and adaptation
of general rules to the specific case of spin 1/2.

3.2 Properties of the Perturbation

We undertake several steps toward the solution of Eq. (7) in order to analyse the effect of the random
field V which we refer to as the perturbation. It is convenient to search for the solution in the form

(

u(t)
v(t)

)

=

(

eiω0t/2 0

0 e−iω0t/2

)(

p(t)
q(t)

)

. (8)

This substitution is conventionally abbreviated as ψ = e−iH0t/
�

η, where η is the spinor with the compo-
nents p and q. The exponential function or an arbitrary function f of the matrix should be understood
with respect to the basis in which H0 is diagonal. The matrix f(H0) is a diagonal matrix in which
the eigenvalues of H0, λn are replaced with f(λn) as in Eq. (8). The spinor η describes the spin in the
reference frame that rotates with the Larmor frequency. Substitution of Eq. (8) in Eq. (7) results in

i
d

dt
η(t) = Ṽ (t)η(t) , (9)

where
Ṽ = e+iH0t/

�

V (t)e−iH0t/
�

η(t) . (10)

To obtain these equations, we have multiplied Eq. (8) by e+iH0t/
�

from the left in order to isolate the
time derivative of η. It follows from Eq. (9) that the pure Larmor precession (V = 0) is described by a
constant spinor, η = η0 as it should be in the rotating frame. The effect of perturbation is collected in
the time dependence of η(t).

It is reasonable to begin the analysis with the form of the perturbation in Eq. (9). A straightforward
matrix multiplication yields

Ṽ (t) =

(

V11(t) V12(t) e
−iω0t

V ∗
12(t) e

+iω0t V22(t)

)

. (11)

As any Hermitian 2 × 2 matrix, Ṽ (t) can be expanded in four basis matrices: unity matrix,
�
, and the

three Pauli matrices given in Eq. (4):

Ṽ (t) = V0(t)
�
+ Vz(t)σz + V+(t)σ+ e

iω0t + V−(t)σ− e
−iω0t . (12)

Here

V0 =
V11 + V22

2
, Vz =

V11 − V22
2

, V+ = V12 , V− = V21 = V ∗
+ (13)

and matrices σ± are the ladder operators for the spin:

σ+ =
σx + iσy

2
=

(

0 1
0 0

)

and σ− =
σx − iσy

2
=

(

0 0
1 0

)

. (14)
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The above representation displays the action of different components of the perturbation on the spin
which can be analyzed using Eq. (9) in the form

d

dt
η(t) = −iṼ (t)η(t) . (15)

This is an explicit expression for the time derivative of η at a given moment of time. We use it to find
the spinor in the next moment: η(t +∆t) = η(t) − i∆tṼ η(t). For ∆t → 0, each term in Ṽ contributes
independently to the change in η. Thus we can analyse the trend in the time dependence of η(t). For
example, the term V0 results in the following transform

u(t+∆t) = (1− iV0(t)∆t)u(t) , v(t+∆t) = (1− iV0(t)∆t)v(t) . (16)

This does not imply any change in the relative phase between the upper and the lower components of
the spinor that defines the angle ϕ in Eq. (1) which is the phase spin precession. Similarly, the term Vzσz
generates the following transform

u(t+∆t) = (1− iVz(t)∆t)u(t) , v(t+∆t) = (1 + iVz(t)∆t)v(t) . (17)

Due to the smallness of ∆t, this can be represented as u(t + ∆t) = e−iVz(t)∆tu(t) and v(t + ∆t) =
eiVz(t)∆tv(t). The infinitesimal change in the relative phase of the two spinor components is 2Vz(t)∆t.
Thus the term Vz contributes to the change in the precession phase. A phase dispersion in the sample
arises due to this term which is thus the source of the transverse relaxation. This can be expected, since
the term Vzσz describes the action of a magnetic field parallel to ~B0.

The longitudinal relaxation is described by V+ and V− which are coupled to the operators of the spin
flip. These terms originate from the x and y components of the local magnetic field. The action of these
operators is accompanied by multiplication with the exponential factor e±ω0t = e±∆Et/

�

, where ∆E is
the energy difference between the two Zeeman levels of the spin.

3.3 Why Do We Need the Density Matrix?

Equation (9) can be solved perturbatively as an expansion η = η0 + η1 + η2 + . . . in which each term is
proportional to the corresponding power of Ṽ (t). This would give the spinor for a specific time course of
the perturbation. A further operation would be to calculate the averaged spin according to the rules of
quantum mechanics and only then average the result over all possible realizations of the random function
Ṽ (t). It is inconvenient to perform additional steps having already solved the main equation. This can
be illustrated by a problem to describe the zero mean magnetization in the sample. A single spin has
always a direction as follows from Eq. (1). The zero total magnetization is a result of incoherent addition
of contributions of individual spins. This fact is obscured in the description based on individual spinor
such as in Eq. (9).

The standard way to overcome this problem is to perform the averaging over the statistical ensemble
prior to solving the Schrödinger equation. The solution is then formulated in terms of the density matrix,
ρ which is bilinear in the original spinors. The derivation of the density matrix is given in many textbooks.
A suitable reference in the present context is Ref. [1, chapter 4]. The average value of a physical quantity
Q is given by

〈Q〉 = Tr ρQ . (18)

This operation includes both the quantum mechanical and the statistical averaging. The content of the
density matrix can be clarified by calculating the mean values of all three components of the spin operator
and expressing the elements of ρ in terms of these quantities. This yields

ρ =

(

1 + sz s−
s+ 1− sz

)

, (19)
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where s± = sx± isy and sx, sy and sz are the mean values of the three spin components. Note that these
quantities are proportional to the macroscopic nuclear magnetization in the sample. In particular, s+
determines the complex-valued signal acquired in MR scanners. The representation in Eq. (19) enables
writing any given value of the mean spin, in particular ~s = 0.

The Schrödinger equation, Eq. (9), takes the following form in terms of the density matrix

i
dρ

dt
= [Ṽ , ρ] , (20)

where [Ṽ , ρ] = Ṽ ρ − ρṼ is the commutator of two matrices. This equation is already written in the
rotating frame.

3.4 Perturbative Solution for Density Matrix

We search for the solution to Eq. (20) in the form of a power series in Ṽ :

ρ = ρ0 + ρ1 + ρ2 + . . . (21)

Substitution of this expansion in Eq. (20) and equating terms of the same order in Ṽ gives the following
recursive set of equations

d

dt
ρ0 = 0 (22)

d

dt
ρ1 = −

i

~
[Ṽ , ρ0] (23)

d

dt
ρ2 = −

i

~
[Ṽ , ρ1] (24)

. . .

The solution is obtained by a straightforward integration which gives a constant ρ0 and

ρ1(t) = −
i

~

∫ t

0

dt1[Ṽ (t1), ρ0] (25)

ρ2(t) = −
1

~2

∫ t

0

dt2dt1[Ṽ (t2), [Ṽ (t1), ρ0]] . (26)

Let us discuss each of these three terms.

The constant value of ρ0 corresponds to the fact that the mean nuclear magnetization remains constant
in the rotating frame in the absence of interaction. A correction comes from the first-order term, Eq. (25).
However, this correction does not affect the constant mean value of magnetization, as the time integral in
Eq. (25) varies randomly around zero according to the stochastic character of Ṽ (t). This does not result
in any systematic drift in the density matrix.

Such a systematic change appears in the second order, Eq. (26). To see that, we analyse the time
dependence of Ṽ (t) which is due to the random variations of V (t) and to the exponential factors in
Eq. (10). It is convenient to represent the decomposition in Eq. (12) in the following form

Ṽ (t) =
∑

α

Vα(t)σα e
iωαt =

∑

α

Vα(t)
∗σ†

α e
−iωαt . (27)

The double form of this operator expresses the fact that it is Hermitian. The summation index takes the
values α = z, +, − in agreement with Eq. (12). The values of ωα are different for different α. The term
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proportional to the unitary matrix is omitted, since it commutes with any ρ0. A substitution of Ṽ (t2)
and Ṽ (t1) with the middle and the last expressions in Eq. (27) respectively results in the following form
of ρ2

ρ2(t) = −
1

~2

∑

αβ

[σα, [σ
†
β , ρ0]]

∫ t

0

dt2

∫ t2

0

dt1Vα(t2)Vβ(t1)
∗eiωαt2−iωβt1 . (28)

Fig. 5

The integration area in the (t1, t2)-plane is shown in figure 5 with the gray triangle. The value of the
time t should be small as compared with the relaxation time, for example it can be selected in the
submilisecond range. This time is still much longer than the correlation time. A systematic drift in the
density matrix is present if the integral in Eq. (28) is proportional to this large time. This is the case
for the terms in the double sum for which α = β. In this case the integrand does not oscillate in the
direction parallel to the diagonal of the square shown in figure 5. All other terms are small due to the fast
oscillations in the whole integration area. The neglect of such terms casts the second-order contribution
in the form

ρ2(t) = −
1

~2

∑

α

[σα, [σ
†
α, ρ0]]

∫ ∞

0

d∆t

∫ t

0

dt1Vα(t1 +∆t)Vα(t1)
∗ eiωα∆t , (29)

where the new variable is ∆t = t2 − t1. The main contribution to the original integral comes from the
region in which t2 − t1 is of the order of τ and the random functions Vα(t2) and Vβ(t1) are correlated.
This region is represented in figure 5 as the area between the dashed line and the diagonal of the square.
By this reason, the integration over ∆t in Eq. (29) is extended to infinity.

The integration over t1 in Eq. (29) performs the averaging of the product Vα(t1 +∆t)Vα(t1)
∗, since

the range of integration from zero to t is very large. We assume that the random function Vα(t) takes all
possible values during this time. This means that we can replace the product with its averaged value:

∫ t

0

dt1Vα(t1 +∆t)Vα(t1)
∗ ≡ tGαα(∆t) , (30)

where Gαα is by definition the autocorrelation function of Vα. The remaining integration fulfills the
Fourier transformation of Gαα:

∫ ∞

0

d∆tGαα(∆t) e
iωα∆t = Jαα(ωα) . (31)

This quantity is the spectral density of perturbation involved in the discussed in section 2.3 above.

The final result for ρ2 takes the form

ρ2(t) = −
t

~2

∑

α

[σα, [σ
†
α, ρ0]]Jαα(ωα) . (32)
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This formula shows that ρ2 brings a small correction, which is a linear in time, to ρ0. This change in
the density matrix is effective on a coarse-grained time scale. The value of t should be shorter than the
observed relaxation time, but it is much longer than the typical time of microscopic processes set by the
correlation time τ . This means that Eq. (32) expresses the time derivative of ρ on the macroscopic time
scale. We rewrite this formula in terms of the total density matrix:

d

dt
ρ(t) = −

1

~2

∑

α

[σα, [σα, ρ]]Jαα(ωα) . (33)

Using the explicit expression given in Eq. (12), this formula takes the form

d

dt
ρ(t) = −

1

~2
([σz , [σz , ρ]] Jzz(0) + [σ+, [σ−, ρ]] J+−(ω0) + [σ−, [σ+, ρ]] J−+(ω0)) , (34)

where J−+(ω0) = J+−(ω0)
∗.

Consider now an arbitrary magnetization described by the density matrix given in Eq. (19). We
substitute it in Eq. (34) and find the change in the magnetization. The double commutators can be
calculated straightforwardly, but it is more convenient to decompose the density matrix as

ρ =
�
+ szσ3 + s+σ+ + s−σ− (35)

and to use the following commutation relations

[σ3, σ+] = 2σ+ , [σ3, σ−] = −2σ− , [σ+, σ−] = σ3 . (36)

Equations for the component of the density matrix are obtained by equating the coefficient in front of
the Pauli matrices on both sides of Eq. (34). This results in

dsz
dt

= −
2

~2
(J+−(ω0) + J−+(ω0)) sz , (37)

ds+
dt

= −
2

~2
(2Jzz(0) + J+−(ω0)) s+ . (38)

These equations describe the monoexponential relaxation with the rates

R1 = −
2

~2
(J+−(ω0) + J−+(ω0)) , (39)

R2 = −
2

~2
(2Jzz(0) + J+−(ω0)) . (40)

(41)

The results obtained are further applied to specific mechanisms of relaxation which define the form
of the functions Jzz and J+−. In particular, the number of quantum states under consideration should
be increased to from two to four to describe the relaxation rate caused by the dipole - dipole interaction
of spins in the same molecule either identical [9] or different [10, 11]. We stop at this point and address
the reader to the literature.
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3.5 Semiclassical Approach vs Quantum Theory

The most adequate theory of relaxation involves quantum mechanics to describe both the spin system and
the lattice. This does not change the final expression for the relaxation rates obtained semiclassically,
Eqs. (39) and (40) [12, chapter 8]. The quantum theory complements the semiclassical approach by
specifying the equilibrium state toward which the spins relax. In the semiclassical theory, the longitudinal
magnetization vanishes in the equilibrium state (sz = 0 is the stationary solution to Eq. (37)). In reality,
the equilibrium magnetization is defined by the Boltzmann distribution,

ρeq = e−H0/kT =

(

e−
�
ω0/2kT 0

0 e+
�
ω0/2kT

)

≈

(

1−
�
ω0

2kT 0

0 1 +
�
ω0

2kT

)

, (42)

where we take into account that the Zeeman energy is much smaller than kT in the liquid state.

The quantum theory shows how the Boltzmann distribution in the spin system is induced by the same
distribution in the lattice. The thermal equilibrium of the lattice is not affected by perturbations of the
spin subsystem, since the latter has much less degrees of freedom than in the whole thermal bath. Details
and further references are available in the literature [12, 1], see also [13].

The quantum theory of relaxation results in a substitution of the density matrix in Eqs. (33) and (34)
with its deviation from the equilibrium: ρ → ρ− ρeq . This is the only change in the above calculations
which lead to sz ≈ −~2ω0/2kT in the equilibrium.
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